Ultrafast Spectroscopy

We have established a multi-purpose ultrafast spectroscopy facility to support a wide range of programmes in the UK bioscience community:

The Laser System:

A one-box femtosecond Ti:sapphire amplifier laser system (Spectra-Physics Solstice-Ace) produces 6 mJ of 100 fs pulses at 1 kHz, centred at 800 nm. The amplifier seeds two TOPAS-Prime OPAs, both of which have monolithic NIRUvis units, one of which has a DFG unit which will produce wavelengths ranging from 250 nm to 2.6 µm and 250 nm to 11 µm respectively.

Visible Transient Absorption:

Helios, Ultrafast Systems.

Time resolution ~200 fs. Time range up to 3.3 ns (optical delay stage).

Probe wavelengths: 325 - 750 nm (white light continuum generated with amplifier fundamental in Sapphire and CaF2).

Eos, Ultrafast Systems.

Time resolution ~500 ps, Time range up to 400 us (electronically controlled).

Probe wavelengths: 400 - 800 nm (white light fiber laser).

Both use the same 512 point broadband CMOS detectors.

UV/Visible Fluorescence:

Halcyone, Ultrafast Systems.

Time resolution ~300 fs, Time range up to 5.8 ns.

Detection wavelengths 300 - 700 nm using 'up-conversion' and 'down-conversion' techniques. Broadband detection using CCD camera

Infra-Red Transient Absorption:

Helios IR, Ultrafast Systems

Time range up to 8 ns

Details T.B.C.

Further enquiries: please contact Dr Samantha Hardman (samantha.hardman@manchester.ac.uk)



Selected Ultrafast Publications From The Group:

Observation of the Δg mechanism resulting from the ultrafast spin dynamics that follow the photolysis of coenzyme B12 (2019) J. A. Hughes, S. J. O. Hardman, N.S. Scrutton, D. M. Graham, J. R. Woodward, and A. R. Jones Journal of Chemical Physics, 151, 201102, DOI: 10.1063/1.5127258

Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis (2019) S. Zhang, D. J. Heyes, L. Feng, W. Sun, L. O. Johannissen, H. Liu, C. W. Levy, X. Li, J. Yang, X. Yu, M. Lin, S. J. O. Hardman, R. Hoeven, M. Sakuma, S. Hay, D. Leys, Z. Rao, A. Zhou, Q. Cheng & N. S. Scrutton Nature, 574, 722-725, DOI: 10.1038/s41586-019-1685-2

Photochemical mechanism of an atypical algal phytochrome (2018) U.Choudry, D.J. Heyes, S.J.O. Hardman, M. Sakuma, I.V. Sazanovich, J. Woodhouse, E. De La Mora, M. Pedersen, M. Wulff, M. Weik, G. Schiro, N.S. Scrutton, ChemBioChem, 19, 1036-1043, DOI: 10.1002/cbic.201800016 Featured on front cover

Stepwise hydride transfer in a biological system: insights into the reaction mechanism of the light-dependent protochlorophyllide oxidoreductase (2018) N. Archipowa, R.J. Kutta, D.J. Heyes and N.S. Scrutton, Angewandte Chemie, 57, 10, 2682-2686, DOI:10.1002/anie.201712729 Open Access

Direct evidence of an excited state triplet species upon photoactivation of the chlorophyll precursor protochlorophyllide (2017) Brandariz-de-Pedro, G., Heyes, D. J., Hardman, S. J. O, Shanmugam, M., Jones, A. R., Weber, S., Nohr, D., Scrutton, N. S., Fielding, A. J., J. Phys. Chem. Lett., 8 (6), 1219–1223, DOI: 10.1021/acs.jpclett.7b00200

Excited state properties of protochlorophyllide analogues and implications for light driven synthesis of chlorophyll (2017) Heyes, D. J., Hardman, S. J. O., Mansell, D., Ní Cheallaigh, A., Gardiner, J. M., Johannissen, L. O., Greetham, G. M., Towrie, M., Scrutton, N. S., J. Phys. Chem. B., 121, 1312-1320, DOI: 10.1021/acs.jpcb.7b00528

Engineering proximal vs distal heme-NO coordination via dinitrosyl dynamics: implications for NO sensor design (2017) Kekilli, D., Petersen, C. A., Pixton, D. A., Ghafoor, D. D.,Abdullah, G. H., Dworkowski, F. S. N. Wilson, M. T., Heyes, D. J., Hardman, S. J. O., Murphy, L. M., Strange, R. W., Scrutton, N. S.,Andrew, C. R., Hough, M. A., Chemical Science, 8, 1986-1994; DOI: 10.1039/C6SC04190F Open Access

Untangling heavy protein and cofactor isotope effects on enzyme- catalyzed hydride transfer (2016) Longbotham, J. E., Hardman, S. J. O., Görlich, S., Scrutton, N.S., Hay, S., J. Am. Chem. Soc., 138 (41), 13693–13699, DOI: 10.1021/jacs.6b07852 Open Access

Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR) (2016) Menon, B. R. K., Hardman, S. J. O. Scrutton, N. S., Heyes, D. J., Journal of Photochemistry and Photobiology B: Biology, 161, 236-243, DOI: 10.1016/j.jphotobiol.2016.05.029

*First publication from the new system*

Cross-species analysis of protein dynamics associated with hydride and proton transfer in the catalytic cycle of the light-driven enzyme protochlorophyllide oxidoreductase (2016) Hoeven, R., Hardman, S. J. O., Heyes, D. J., Scrutton, N. S. , Biochemistry, 55(6), 903-913, DOI: 10.1021/acs.biochem.5b01355

The photochemical mechanism of a B12-dependent photoreceptor protein (2015) Kutta, R. J., Hardman, S. J. O., Johannissen, L. O., Bellina, B., Messiha, H. L., Ortiz-Guerrero, J. M., Elías-Arnanz, M., Padmanabhan, S., Barran, P., Scrutton, N. S., Jones, A. R., Nature Communications, 6, 7907, DOI: 10.1038/ncomms8907

Excited state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase (2015) Heyes, D. J., Hardman, S. J. O., Hedison, T. M., Hoeven, R., Greetham, G. M., Towrie, M. & Scrutton, N. S., Angewandte Chemie, 54, 1512-1515, DOI: 10.1002/anie.201409881

Comprehensive analysis of the green to blue photoconversion of full-length cyanobacteriochrome Tlr0924 (2014) Hardman, S. J.O., Hauck, A. F. E. Clark, I. P., Heyes, D. J. & Scrutton, N. S., Biophys. J., 107, 2195–2203, DOI: 10.1016/j.bpj.2014.09.020

The photoinitiated reaction pathway of full-length cyanobacteriochrome Tlr0924 monitored over 12 orders of magnitude (2014) Hauck, A. F. E., Hardman, S. J. O., Kutta, R. J., Greetam, G. M., Towrie, M., Heyes, D. J. & Scrutton, N. S., J. Biol. Chem., 289, 17747-17757, DOI: 10.1074/jbc.M114.566133

Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalysed by flavoproteins (2013) Hardman, S. J. O., Pudney, C. R., Hay, S. & Scrutton, N. S., Biophys. J., 105, 2549-2558, DOI: 10.1016/j.bpj.2013.10.015

Modulation of ligand-heme reactivity by binding pocket residues demonstated in cytochrome c’ over the femtosecond to second temporal range (2013) Russell, H. J., Hardman, S. J. O., Heyes, D. J., Hough, M. A., Greetham, G. M., Towrie, M., Hay, S. & Scrutton, N. S., FEBS J., 280, 6070-6082

Ultrafast red light activation and slow conformational changes trigger the signaling cascade in Synechocystis phytochrome Cph1 (2012) Heyes, D. J., Khara, B., Sakuma, M., Hardman, S. J. O., Rigby, S. E. J. & Scrutton, N. S., PloS One., 7, e52418, DOI: 10.1371/journal.pone.0052418

Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase (2012) Heyes, D. J., Hardman, S. J. O., Mansell, D., Gardiner, J.M. & Scrutton, N. S. PLoS One. 7:e45642., DOI: 10.1371/journal.pone.0045642.g010

Is there a dynamic protein contribution to the substrate trigger in coenzyme B12-dependent ethanolamine ammonia lyase? (2011) Jones, A., Hay, S., Hardman, S. J. O. & Scrutton, N. S., Angewandte Chemie, 50, 10843-10846, DOI: 10.1002/ange.201105132

Ultrafast infrared spectral fingerprints of vitamin B12 and related cobalamins (2012). Jones, A. R., Russell, H. J., Greetham, G. M., Towrie, M. & Scrutton, N. S., J. Phys. Chem. B., 116, 5586-5594, DOI: 10.1021/jp304594d