Our Research

Enzyme catalysts are central to life. They are the vehicles for delivering innovative bioscience solutions to chemicals manufacture, drug discovery, therapeutics and bioprocessing. They are the key enablers in the white biotechnology revolution, providing essential components in the new science of 'synthetic biology', offering new routes to biofuels, bulk and commodity chemicals and novel therapeutics. Despite this, our ability to create new enzymes through rational engineering is limited, which is a consequence of our poor understanding of mechanism and quantitative appreciation of the 'catalytic effect'.

We are interested in gaining deeper understanding of catalysis and using this information to drive new applications. We focus on fundamental studies of enzyme mechanism, developing 'sharper' tools to analyse mechanisms across a wide range of timescales (femtoseconds to seconds). This involves both classical and quantum mechanical appreciation of the underlying chemistry. We then translate this knowledge into applications, e.g. in industrial biotechnology (chemicals manufacture), or development of potent inhibitors of enzyme function (drug discovery). Our work is highly interdisciplinary and we have broad interests captured by the descriptors: quantum biology; isotope effects; enzyme chemistry; laser spectroscopy; fast reactions methods; structural biology; kinetics and inhibition; enzyme evolution and pathway engineering; biocatalysis and biomanufacture.

Biocatalyst Engineering

Synthetic Biology

Enzyme Catalysis


Enabling technologies